

Welcome to Auto deprecator’s documentation!

Contents:

	Auto deprecator
	How does it work?

	Installation

	Alternative Installation

	Features

	Installation
	Stable release

	From sources

	Usage

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	History
	2020.4.0 (2020-04-23)

	2020.3.0 (2020-04-11)

	2020.2.0 (2020-02-11)

	2010.1.0, 2010.1.1, 2010.1.2 (2020-01-21)

Indices and tables

	Index

	Module Index

	Search Page

Auto deprecator

[image: _images/auto_deprecator.svg]
 [https://pypi.python.org/pypi/auto-deprecator][image: _images/auto-deprecator.svg]
 [https://travis-ci.org/auto-deprecator/auto-deprecator][image: Documentation Status]
 [https://auto-deprecator.readthedocs.io/en/latest/?badge=latest][image: _images/auto-deprecator1.svg]Deprecation toolkit in Python

	Free software: MIT license

	Documentation: https://auto-deprecator.readthedocs.io.

How does it work?

The library provides the full cycle to deprecate a function in the following ways

[image: _images/cycle.png]
For example, a function called old_hello_world should be deprecated in the version 2.0.0, while the current version of the library is 1.0.0.

Add a decorator deprecate above the function like the below can manage the mentioned deprecation cycle.

from auto_deprecator import deprecate

@deprecate(expiry='2.0.0', current='1.9.0')
def old_hello_world():
 return print("Hello world!")

def hello_world():
 return print("Hello world again!")

You can also suggest the replacing function / method. For details, please refer to the section Provide hints to users.

Warning Stage

Alert the users the deprecation time

When the user calls the methods or initializes the objects which will be deprecated
in the next version or on an expected date, the user should receive the warning of
the future deprecation but get the return in success. The default warning handler is to throw a DeprecationWarning and the handle method can be customized in the section Customize the deprecation handling

>>> old_hello_world()
Hello world!
DeprecationWarning: The function "old_hello_world" will be deprecated on version 2.0.0

Test as if deprecated

Before the component is deprecated, unit / integration testing should be run
to ensure the deprecation does not break the existing flow. Pass in the environment
variables in the testing to simulate that the version is deployed.

(bash) hello-world-app
Hello world!
DeprecationWarning: The function "old_hello_world" will be deprecated in version 2.0.0

(bash) DEPRECATED_VERSION=2.0.0 hello-world-app
Traceback (most recent call last):
 ...
RuntimeError: The function "old_hello_world" is deprecated in version 2.0.0

Expired Stage

If the current version has reached the function expiry version,
calling the deprecated function will trigger the exception by default.

from auto_deprecator import deprecate

__version__ = '2.0.0'

@deprecate(expiry='2.0.0', current=__version__)
def old_hello_world():
 return print("Hello world!")

For example, the above function is called by the downstream
process after-hello-world. The owner of the process is not
aware that the function should be deprecated and replaced by
another function, and the process is crashed by the default
exception. To work around the exception in the production,
before a proper fix is provided, the environment variable
DEPRECATED_VERSION can be injected in the downstream process.

DEPRECATED_VERSION=1.9 after-hello-world

Cleaning Stage

Automatic deprecation before release

Deprecating the functions is no longer a manual work. Every time before release,
run the command auto-deprecate to remove the functions deprecated in the coming
version.

$ auto-deprecate hello_world.py --version 2.0.0

The command removes the function old_hello_world from the source codes as the expiry version is 2.0.0. Also, if the source file does not require to import the auto-deprecate anymore (as all the functions have already been deprecated), the import line will be removed as well.

$ git difftool -y -x sdiff
from auto_deprecator import deprecate <
 <
 <
@deprecate(expiry='2.0.0', current='1.9.0') <
def old_hello_world(): <
 return print("Hello world!") <
 <
 <
def hello_world(): def hello_world():
 return print("Hello world again!") / return print("Hello world again!")

The function with a comment line to state the expiry version is
another way to inform the script auto-deprecate to remove the
part of the code when it is expired. For example,

def old_hello_world():
 # auto-deprecate: expiry=2.0.0
 print('hello world')

For the details of the comment hints, please refer to the section Auto deprecation hints in comments.

Installation

The library can be easily installed with pip

pip install auto-deprecator

Alternative Installation

If the auto-deprecator is included and the functions are
well deprecated (following the whole cycle mentioned above),
your software does not need auto-deprecator anymore. For
developers who are not comfortable to include a library not
always in use as a dependency, they can just clone the source
code into your project instead.

For example, your Python project contains a module called
“utils” to maintain all the utility functions.

.
├── setup.py
└── test_py_project
 ├── cli.py
 ├── __init__.py
 ├── test_py_project.py
 └── utils
 └── __init__.py

With the bash command “curl”,

curl https://raw.githubusercontent.com/auto-deprecator/auto-deprecator/develop/auto_deprecator/__init__.py -o $DEST

the source code of auto-deprecator can be cloned into the
target directory, i.e. “test_py_project/utils” in the example

curl https://raw.githubusercontent.com/auto-deprecator/auto-deprecator/develop/auto_deprecator/__init__.py -o test_py_project/utils/auto_deprecator.py

Features

Provide hints to users

Provide the parameter “relocate”, the warning / error message will inform the user about
the relocated method.

@deprecate(expiry='2.1.0', current='2.0.0', relocate='new_compute_method')
def compute_method():
 return 'hello world'

>>> old_hello_world()
Hello world!
DeprecationWarning: The function "old_hello_world" will be deprecated on version 2.0.0..
 Please use method / function "new_compute_method".

Import current version from module name

Instead of importing the version (__version__) in the module,

from your_package import __version__

@deprecate(expiry='2.1.0', current=__version__)
def compute_method():
 return 'hello world'

specifying the module name, which includes the version attribute, can
help maintain the source code in a clean manner.

@deprecate(expiry='2.1.0', version_module='your_package')
def compute_method():
 return 'hello world'

Especially if the function is removed by the action auto-deprecate,
the unused import will not be left in the module.

Customize the deprecation handling

By default, the deprecate decorator raise DeprecationWarning for the future expiry and RuntimeError on the expiration. The behavior can be modified so as to fit in the infrastructure / production environment.

For example, the DeprecationWarning can be replaced by a simple print out by injecting a callable function into the parameter warn_handler.

@deprecate(expiry='2.1.0', current='2.0.0', warn_handler=print)
def compute_method():
 return 'hello world'

Same for injecting a callable function into the parameter error_handler, the behavior is replaced if the function is deprecated.

Auto deprecation hints in comments

The auto deprecation script handles not only the expiry parts wrapped by the decorator, but also those stated with comments.
The comment line in the format # auto-deprecate: expiry=<version>
in the scope of the function or class is treated same as the
decorator hints @deprecate(expiry="version", ...).

For example, the below function will be removed

hello_world.py

def old_hello_world():
 # auto-deprecate: expiry=2.0.0
 print('hello world')

when the script is called with current version greater than 2.0.0

$ auto-deprecate hello_world.py --version 2.1.0

Installation

Stable release

To install Auto deprecator, run this command in your terminal:

$ pip install auto_deprecator

This is the preferred method to install Auto deprecator, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for Auto deprecator can be downloaded from the Github repo [https://github.com/gavincyi/auto_deprecator].

You can either clone the public repository:

$ git clone git://github.com/gavincyi/auto_deprecator

Or download the tarball [https://github.com/gavincyi/auto_deprecator/tarball/master]:

$ curl -OJL https://github.com/gavincyi/auto_deprecator/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use Auto deprecator in a project:

import auto_deprecator

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/gavincyi/auto_deprecator/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

Auto deprecator could always use more documentation, whether as part of the
official Auto deprecator docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/gavincyi/auto_deprecator/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up auto_deprecator for local development.

	Fork the auto_deprecator repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/auto_deprecator.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv auto_deprecator
$ cd auto_deprecator/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 auto_deprecator tests
$ python setup.py test or pytest
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.5, 3.6, 3.7 and 3.8, and for PyPy. Check
https://travis-ci.org/gavincyi/auto_deprecator/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ pytest tests.test_auto_deprecator

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bump2version patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

History

2020.4.0 (2020-04-23)

	Support deprecation hints in comments

	Simplify the project architecture

2020.3.0 (2020-04-11)

	Support automatic deprecation in the directory

	Support customizing the deprecation handler

2020.2.0 (2020-02-11)

	Introduce parameter version_module in the deprecate decorator, to
import the version dynamically

	Removed magic version import

2010.1.0, 2010.1.1, 2010.1.2 (2020-01-21)

	Support alerting the users the deprecate version

	Support testing with environment variables

	Support automatically deprecate the expiry source code

Index

 _static/ajax-loader.gif

_images/cycle.png
What happened when the function should be deprecated in version 2.0.02
@deprecate(expiy=200 .)

Version

User

Dev

Warning

IDeprecation warming alerts the users the:
expiry version of the deprecating
function

Unit /Integration Test via injecting
environment variable
DEPRECATED_VERSION

2.0.0
Expired

Exception s thrown out with message [The function is completely removed from
that the function is deprecated the source code.

Production support can stil rollback by
hijacking the current version, i.e.
environment variable
“DEPRECATED_VERSION"

Release process can automatically
remove the deprecated function from the,
source code before the release

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to Auto deprecator’s documentation!

 		
 Auto deprecator

 		
 How does it work?

 		
 Warning Stage

 		
 Expired Stage

 		
 Cleaning Stage

 		
 Installation

 		
 Alternative Installation

 		
 Features

 		
 Provide hints to users

 		
 Import current version from module name

 		
 Customize the deprecation handling

 		
 Auto deprecation hints in comments

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 History

 		
 2020.4.0 (2020-04-23)

 		
 2020.3.0 (2020-04-11)

 		
 2020.2.0 (2020-02-11)

 		
 2010.1.0, 2010.1.1, 2010.1.2 (2020-01-21)

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

